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We analyze the preferences of a risk-averse seller over the class of “‘standard’ auctions
with symmetric and risk-neutral bidders. Assuming that buyers’ private signals are
independently distributed, we find that a sealed-bid first-price auction with an appro-
priately set reserve price is preferred by all risk-averse sellers to any other standard
auction. In first- and second-price auctions, the more risk averse a seller, the lower
the seller’s optimal reserve price. Given two first-price auctions with reserve prices
and entry fees such that both have the same screening level, all risk-averse sellers
prefer the auction with the lower entry fee.

1. Introduction

8  Much of the theoretical literature on auctions is concerned with a comparison of
revenue from different auction forms. A seller choosing between auction forms pre-
sumably prefers the form that generates the highest equilibrium expected revenue. Such
a research agenda implicitly assumes, however, that the seller is risk neutral. This article
generalizes these analyses by considering preferences of risk-averse sellers over stan-
dard auction forms when selling to risk-neutral bidders. This is a natural step in trying
to model such markets as manuscript auctions, where publishers have diversification
opportunities but an individual author does not. Initial public offerings by small firms,
where the current owner’s equity and the capital inflow are at risk, but equity variability
of the security brokers bidding to underwrite is negligibly at stake, are also examples.

When bidders’ private information is independently distributed (as in the indepen-
dent-private-values environment), all of the standard auction forms generate the same

* [J.S. Bureau of Labor Statistics; waehrer_k @bls.gov.

** Rutgers University; harstad@rutcor.rutgers.edu, rothkopf @rutcor.rutgers.edu.

The research presented in this article was supported by National Science Foundation grant nos. SES
91-08551 and SBR 93-09333. The diligent comments of Paul Klemperer and two anonymous rcferees notably
improved the article; responsibility for any remaining errors is ours. Some of the research for this article was
conducted while Keith Waehrer was visiting at Brigham Young University: he thanks them for their hospi-
tality. Any opinions expressed herein are those of the authors and do not constitute policy of the U.S. Bureau
of Labor Statistics.

Copyright © 1998, RAND 179



180 / THE RAND JOURNAL OF ECONOMICS

expected revenue.’ This result is commonly referred to as “‘revenue equivalence.” In
addition, with an appropriately set reserve price, all of the standard auction forms
maximize expected revenue. In contrast to the revenue equivalence result, a risk-averse
seller is not indifferent between all standard auction forms.

Risk aversion creates a preference for a first-price sealed-bid auction with an op-
timally set reserve price to all other standard auction forms when buyers’ private in-
formation is independently distributed. Intuitively, this preference arises because,
conditioned on the highest signal, all standard auctions yield the same expected reve-
nue, but conditioned on the highest signal, revenue in a first-price auction is nonsto-
chastic; under the same conditioning, revenue in other auctions retains its randomness.
As we show, this extra randomness makes all other standard auction forms inferior to
a first-price auction from the perspective of risk. Note that it would appear to be
possible to make a similar argument for second-price auctions relative to first-price:
conditional on the second-highest bidder’s type, second-price auction revenue is non-
stochastic, while first-price auction revenue would still be random. This argument fails,
however, since conditional on the second-highest signal, the expected revenues from
first-price and second-price auctions are not equal.

A risk-averse seller also prefers second-price to English auctions when the signals
are independently distributed. The intuition underlying this result is similar in that,
conditioned on the highest two types, the revenue from a second-price auction is non-
stochastic while English auction revenue retains some randomness.

In first-price auctions, an increase in the reserve price increases the equilibrium
bids of participating bidders but also increases the probability that no bidders will
participate in the auction. While not mean preserving, an increase in the reserve price
shifts probability weight to the upper and lower tails of the revenue distribution. We
show that a seller’s optimal reserve price is decreasing in the degree of the seller’s risk
aversion. The same comparative static result is shown for second-price auctions when
the winning bidder’s expected value is independent of the private information of rivals.

Given two first-price auctions with different reserve prices and entry fees set so
as to yield the same expected revenue from independently informed bidders, a risk-
averse seller prefers the auction with the lower entry fee. Entry fees introduce an
additional randomness to the revenue generated by an auction, since the number of
bidders paying the fee is random. When the entry fee is higher, more of the revenue
from the auction is generated from that source, increasing the risk in overall revenue.

Auction models often make predictions about unobservable variables, such as bid-
ders’ asset values. In contrast, our results relate to the price variability generated by
different auction forms. As is shown in Theorem 1, all risk-averse sellers prefer a first-
price auction to any other standard auction; thus, price variability in first-price auctions
must be less than the variability in other standard auctions. An empirical test of equi-
librium behavior could therefore be constructed on the basis of these results, using
price data from auctions of different forms.

Symmetrically risk-averse buyers in the private-values environment have been ex-
tensively studied. A first-price auction is shown to generate higher expected revenue
than second-price and English auctions when bidders are risk averse.> Maskin and Riley

' To be precise, any auction form for which the highest valuer buys the asset for certain, and a bidder
with the lowest possible private information attains zero expected profit. yields a revenue equal in expectation
to the second-highest evaluation; see Myerson (1981).

> See Harris and Raviv (1981), Holt (1980). Matthews (1980). and Riley and Samuelson (1981); Mat-
thews (1987) generalizes. by also considering buyers’ preferences over different auction forms. Smith and
Levin (1996) generalize these results by allowing for endogenous participation in the auction. In these articles
the assumption that buyers know for certain the auctioned asset’s value to them is peculiar, as it leaves the
only risk that of losing the auction.
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(1984) find in a more general case that when bidders are risk averse, the expected-
revenue-maximizing selling mechanism is so complex that it hardly resembles an auc-
tion.

Few articles consider the preferences of risk-averse sellers over different auction
forms. Vickrey’s (1961) classic article calculates the variance of prices in first-price
and English auctions with uniformly distributed private values and risk-neutral bidders.3
Matthews (1980) and Maskin and Riley (1984) consider the preferences of a risk-averse
seller over first-price and second-price auctions in the private-values environment when
the buyers are symmetrically risk averse (or risk neutral). Our analysis of first-price
auctions differs from theirs in that we show that risk-averse sellers prefer first-price
auctions not only to second-price auctions but to any standard auction. Also, we allow
bidders to be uncertain of asset value, incorporating some common-value elements. In
order to focus on seller risk aversion, we assume bidders are risk neutral.

For concreteness, bid takers are referred to as sellers and bidders as buyers. How-
ever, a complete analogue of all the results can readily be extended to markets in which
a risk-averse buyer seeks to buy via auction from a collection of risk-neutral sellers.
Examples would include cases in which small firms seek to have relatively specialized
plant or equipment constructed in a one-time contract, with the cost or the consequences
of substandard performance running to a large fraction of equity.

2. The model

B We analyze the ‘“‘general symmetric model” of affiliated-values auctions in Mil-
grom and Weber (1982); a brief outline is provided here, with readers encouraged to
consult Milgrom and Weber’s presentation for motivation of the assumptions. Our anal-
ysis does not require a reevaluation of equilibrium bidding behavior: once the seller
has committed to an auction form, the incentives faced by the bidders are unaffected
by the risk preferences of the seller.

A (strictly) risk-averse seller is any seller whose preferences over different auction
forms are described by her expected utility of the resulting revenue, where the utility
function is bounded, increasing, (strictly) concave, and (for simplicity) differentiable
(Rothschild and Stiglitz, 1970). We use U to denote such utility functions.

The seller wishes to auction off a single indivisible asset. Let N = {1, ..., n}
denote the set of risk-neutral bidders. Prior to the auction, each bidder i privately
observes a signal, X; € [x, X], containing some information about his value for the
asset. Let X = (X,, ..., X,). Bidder i’s value for the object at auction is denoted
V.=uX,X_,S),where X, = X, ..., Xi.i. Xirrs ... X)), S=(5,...,S,)isa
vector of other relevant information, and the support of V, is bounded. The function u
is positive and differentiable. Furthermore, we assume that u is increasing in X; and
symmetric and nondecreasing in X _,. Let v, denote the seller’s deterministic asset value.
Let Y,, ..., Y, , denote a reordering of X,, ..., X, suchthaty, =Y, = ... =Y, .
(Thus, ¥, = max{X,, ..., X,}.) We assume that (S, X) are affiliated and that the joint
density, f, of (S, X) is symmetric and differentiable in X.# Define the function v as
v(x, ¥) = E[u(x, X_,, S)|X, = x, ¥, = y]. Affiliation and the monotonicity of u imply
that v is increasing in its first argument and nondecreasing in its second argument; the

¥ Vickrey (1961) calculates the variances correctly but misreports their relative quantities.
+ Random variables jointly distributed by density f are affiliated if, for all ¢ and ',

Fa DfEND) = fRfE,

where 7 3/ ' = (max{z,. 5/}, ..., max{z,. o}y and /A 2 = (min{z, g/}, ..., min{g,, Z;}). The results
that we use relating to affiliated random variables arc all presented by Milgrom and Weber (1982).
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differentiability of v follows from the differentiability of u and f. A bidding strategy
is a function from the support of X, to R .. Throughout this article we restrict attention
to an equilibrium where all bidders follow a common pure strategy.

The affiliated-values environment has the benefit of containing many of the en-
vironments found in the theoretical auction literature as special cases. The common-
value environment is recovered by adding the assumption that E[V,;|X] = E[V,|X] for
all i, j € N. In the private-values environment 1 depends only on X,. Much of the
literature on auctions deals with the independent-private-values environment, which is
recovered by the further assumption that the private signals are independently and
identically distributed. Three of the results in this article, Theorems 1, 2, and 4, apply
in the special case of the affiliated-values environment where the signals X, ..., X,
are independently distributed. This assumption generalizes the independent-private-val-
ues environment, since independence of the signals is necessary but not sufficient to
yield that environment. In the common-value environment, it is standard to interpret
the private signals as estimates of the common value. Such an interpretation would
lead one to conclude that the signals should be correlated. Technically speaking, how-
ever, independent signals are consistent with the common-value environment. An ex-
ample of such a common-value environment occurs when the common value in an
auction is the mean of the bidders’ independent private signals (see Albers and Harstad,
1991). Thus, the results of Theorems 1, 2, and 4 hold for common-value environments
with independent signals.

We only consider auctions where participation is voluntary and nonparticipating
bidders receive a zero payoff. (Nonparticipating bidders have no chance of receiving
the asset and pay nothing to the seller) Hence, if a bidder’s expected payoff from
participating in the auction is negative, then he will choose not to participate. Auction
rules sometimes require a minimum bid (reserve price) or an entry fee from partici-
pating bidders. These rules could result in a negative expected payoff for some bidders
if they choose to participate (i.e., pay the entry fee, if any, and bid). When a common
bidding strategy is followed and bidders who are indifferent between participating and
not participating choose to participate, then the monotonicity of v implies that there is
a screening level, x* € [x, X] such that in equilibrium any and only bidders with signals
below x* choose not to participate in the auction. We limit our attention to auction rules
for which bidders choose to participate with positive probability (i.e., x* < X).

In Theorems 1, 2, and 3 we consider the revenue generated by standard auctions
from the perspective of a risk-averse seller. A standard auction is a bidding scheme
where (in equilibrium) the asset is always allocated to the bidder with the highest
private signal as long as that signal is above the screening level, the winning bidder
makes a nonnegative payment, the nonwinning bidders pay zero, the auction rules are
anonymous, and there is a common equilibrium strategy.® In general, the price paid by
the winning bidder may be random or might be a function of any of the bids received.
Most of the commonly studied auction forms (first-price, second-price, and the stylized
English) can be modelled as standard auctions.

The following lemma and corollary are slight variations on results commonly
found in the auction literature (see Myerson, 1981). We use these particular versions
of the results as lemmas in proofs presented later.

Lemma 1 (expected payment equivalence). Consider auction forms A and B with the
same screening level. Suppose that X|, . . ., X, are independent and that in both forms

5 Qur definition generalizes Milgrom’s (1987) definition of a “‘standard™ auction in that it includes
auctions that do not always award the object to a buyer, as in the case when no bids are received over a
reserve price. However. our definition is a special case of the classes of auctions analyzed by Myerson (1981)
and Riley and Samuelson (1981).
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the asset is always allocated to the bidder with the highest private signal as long as
that signal is above the screening level. Then conditional on his private signal, a bid-
der’s expected payment is equal in both auction forms.

Proof. Let 7z, x) denote bidder 1’s expected payoff in auction § € {A, B} when
bidder 1 has private signal x, all the other bidders follow their common equilibrium
strategy, and bidder 1 follows the equilibrium strategy of a bidder with signal z. For
22 X%, 7z X) = $(z 0) — p2), for £ € {A, B}, where ¢(z, x) = [{ v(x, y)f,(y) dy
and p,(z) denotes bidder 1’s expected payment when he follows the equilibrium strategy
of a bidder with private signal z in auction form ¢ The independence of X, . . ., X, implies
that a bidder’s expected payment depends on z but not on x. Incentive compatibility implies
dx, x) — p.(x) = Hz, x) — p(2) and &z, 2) — p(2) = Px, 2) — p,(x). For x = g,
these conditions imply

d(x, ) — ¢ x)  pdx) = p2) | Py, 2) — &z 2)

X =z X — 2 X = Z

Taking the limit of the expression above as z approaches x results in v(x, x)f, (x) = p/(x).
7, must also satisfy m.(x*, x°) = 0, since if m,(x", x*) < 0, then a bidder with signal x*
would prefer not to participate, and if 7.(x*, x*) > 0, then some bidders with signals
below x* would have an incentive to participate, violating the definition of x*. Using
these conditions to solve for p, yields p.(x) = vy, Wf y () dy + &x, x) for x = x°
and £ € {A, B}. We also know that p,(x) = 0 for x < x*, since nonparticipating bidders
pay nothing. Therefore, p,(x) = py(x) for all x. Q.E.D.

Corollary 1 (expected revenue equivalence). Let R, and Ry denote the revenue gen-
erated by the two auctions described in Lemma 1.

(i) E[R,] = E[R,].
(ii) Further suppose that A and B are standard auctions. Then

E[R,|X, =x Y, <x] = E[R,|X, = x, ¥, < x].

Proof. (1) E[R\] = 21 Elpa(X)] = 211 E[pg(X)] = E[R,].

(i1) In a standard auction, the only bidder to make a payment to the seller is the
winning bidder (who is also the bidder with the highest private signal). Let p,(x) be
the expected payment of a bidder with signal x in auction ¢ conditional on having the
highest signal. Hence, p.(x) = p,(x)Fy (x). Therefore,

E[R|X, = x, ¥, < x] = p,(x) = pg(x) = E[Rs|X, = x, ¥, < x],

since all of the seller’s revenue derives from the winning bidder’s payment. Q.E.D.

As is common, our analysis focuses on first-price, second-price, and English auc-
tions, all of which are standard auctions when there is no entry fee. In a first-price
auction, bids are submitted simultaneously; if the reserve price is met, then the highest
bidder obtains the asset for the amount of his bid. A second-price auction operates
similarly, except that the price is the greater of the second-highest bid and the reserve
price. In an English auction, the price is raised orally until there is only one bidder left
active. This general theme can take a number of different forms.® We analyze the

¢ Rothkopf and Harstad (1991) show that these different forms of the English auction have different
implications for the revenue of the seller.



184 / THE RAND JOURNAL OF ECONOMICS

stylized version of the English auction considered by Milgrom and Weber (1982), where
the price rises continuously and bidders’ exits are public and irrevocable.

3. The seller’s preferences over standard auction forms

®  For the special case of the affiliated-values environment where the signals X are
independently distributed, a risk-averse seller’s preference over standard auctions is
definitive.

Theorem 1. If X,, ..., X, are independent, then (i) all risk-averse sellers prefer a first-
price auction to any other standard auction with the same screening level, and (ii) any
strictly risk-averse seller strictly prefers a first-price auction to any standard auction
with the same screening level and where in the standard auction the distribution of the
payment by the winning bidder conditioned on his private signal is not degenerate.

Proof. (i) Let R and R, denote the revenue from a first-price auction and from some
other standard auction form, both with screening level x*. Let 1, be the indicator func-
tion taking the value one in event 6, zero otherwise.

E[UR, + Vo'l(.\»<,x»))|X1 =x Y, <x]=UER, + V(>'1;\r:“;!X| =x Y, <x]

UE[R, + Vu’l{v:.\-‘»lxl =x Y <xD

Il

E[UR, + vyl DX, = x ¥, <x]

The first line in the chain of inequalities follows from Jensen’s inequality, the second
line from part (ii) of Corollary 1, and the final equality from R, being conditionally
nonstochastic. Define the random variable Z = max{X,, ..., X,}. The desired uncon-
ditional preference, that E[U(R, + vy1 ;)] = E[UR, + vyl 5 . ))], follows when
x is replaced with X in the inequality above and the unconditional expectation is taken.’

(ii) The assumptions imply that (a) U is strictly concave and (b) conditioned on
X, = x and ¥, < x, R, is not degenerate conditioned on X, = x and Y, < x. Together,
(a) and (b) suffice for a strict version of Jensen’s inequality, completing the proof of
part (ii). Q.E.D.

An immediate corollary of Theorem 1 is that a first-price auction is strictly pre-
ferred to both second-price and English auctions by strictly risk-averse sellers, since
the resulting prices in both second-price and English auctions depend on the bids of
the nonwinning buyers. The results of Theorem 1 conform with Vickrey (1961), Maskin
and Riley (1984), and Matthews (1980).%

Theorem 2. If X,, ..., X, are independent, then all risk-averse sellers prefer a second-
price to an English auction with the same screening level.

Proof. Consider an English auction with an arbitrary reserve price r. Let x* denote the
common screening level resulting from the common reserve price r.
Define the function v as

VX, Vs ovos Yaur) = E[Vllxl =x Y =y,....Y, =yl

Let Ry(x, y) and Re(x, y) denote the expected revenue from a second-price auction and

7 We thank an anonymous referee for pointing out this relatively straighttorward proof for the result.

8 Experimental evidence presented by Kagel, Harstad, and Levin (1987) and Coppinger, Smith, and
Titus (1980) also shows higher variance for second-price auctions than for first-price auctions despite vari-
ance-reducing constraints in Coppinger, Smith. and Titus (1980) preventing bids above values in second-
price auctions.
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an English auction respectively with reserve price r, conditional on the highest signal
received by any buyer being x and the second-highest signal observed being y. Using
Milgrom and Weber’s (1982) derivations of the equilibrium strategies, R, and R, can
be written as

[0 for x < x®
Ry(x, y) = r fory < x' = x
lv( yy fory=x
[0 for x < x»
Ru(x, ¥v) = 3r fory < x» =< x
]T’(y, » Y. ..., Y, foryz=x"

Notice that the independence of X implies
E[R(x, »|X, = x ¥, = y] = E[R(x, DX, = x, ¥, = y].
The remainder of the argument closely parallels the proof of Theorem 1.

E[UR, + V(l'lh/\‘})’xl =x Y =y] = UER; + Vo'l(v v)le =x Y =yD

U(E[R, + vy l{vi,x‘)'Xl =x Y =y

il

E[U(R; + vy l{\'n,\"})IXl =ux Y =yl

The conclusion follows when x, y are replaced with X, ¥, and the expectation condi-
tional on X, > Y, is taken. Q.E.D.

Taken together, Theorems 1 and 2 imply that all risk-averse sellers prefer first-
price to second-price auctions and second-price to English auctions when the signals
X,, ..., X, are independently distributed. However, Milgrom and Weber (1982) find
exactly the reverse preference structure, English to second-price to first-price auctions,
for a risk-neutral seller in the general affiliated-values environment. This reverse pref-
erence structure will carry over to a slightly risk-averse seller when signals are strictly
affiliated, thus Theorems 1 and 2 cannot hold without the assumption that the signals
are independent.

4. Risk aversion and reserve-price choice

B Besides affecting a seller’s preferences over auction forms, the risk preferences
of a seller will affect the choice of a reserve price. A seller with utility function U,
is said to be more risk averse than a seller with utility function U,, if U, (U;'()) is
a strictly concave function of ¢ (Pratt, 1964). Let b(- | r) denote the equilibrium bidding
strategy in a first-price auction with a reserve price of r. In a first-price or second-
price auction with reserve price r, the screening level, x*(r), is defined implicitly by
¥ v, vy = r1fy(y|x") dy = 0. For a given reserve price, the same set of bidders
would participate in a first-price auction as would participate in a second-price auction
(see Milgrom and Weber, 1982). The following theorem relates a seller’s risk pref-
erences to her choice of a reserve price in first-price and second-price auctions.” To
avoid a corner solution for the optimal reserve price, we assume that v, satisfies

“ For a first-price auction in the independent private-values environment with the monotone hazard rate
assumption. Matthews (1980) shows that a risk-neutral seller would set a higher reserve price than a risk-
averse seller would.
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E[V\|X, =% ¥, <X] > v, > v(x 2. (1)

Theorem 3. Suppose that v, satisfies (1) and a seller with utility function U,, is more
risk averse than a seller with utility function U,.

(i) Then in a first-price auction, a seller with utility function U, will set a reserve
price that is higher than the reserve price set by a seller with utility function U,,.

(ii) Further suppose that v(x, y) is constant in y, for y =< x. Then in a second-price
auction, a seller with utility function U, will set a reserve price that is higher than the
reserve price set by a seller with utility function U,,.

The proof of this theorem makes use of the following two lemmas.

Lemma 2. In a first-price auction with reserve price r and equilibrium bid function b(x|r),
ab(x|r)/ar > 0, for all x above the screening level and all r such that E[V,|X, = %,
Y <Xx]>r>vx x)

Proof. See the Appendix.

Lemma 3. Consider two functions g;; R — R for i = 1, 2 that are differentiable on a
convex set S C R and where argmax{g(x)} C S, for both i = 1, 2 and g;(x) > g,(x),
for all x € S. Then for any x*¥ € argmax{g,(x)} and x}* € argmax{g,(x)}, xj* > x.1°

Proof. See the Appendix.

Proof of Theorem 3. (1) A seller’s expected utility from a first-price auction with reserve
price r and utility function U, for ® = M, L is

Hy(r) = f Uu(b(x| M) f(x) dx + Uy )F(x'(r)), (2)

where F and f are the distribution and density functions for the highest signal and x*(r)
is the screening level. It is straightforward to check that b(x*(r)|r) = r (see the ex-
pression for b in the proof of Lemma 2). Our assumptions imply that x*'(r) > 0, for r
such that x'(r) € (x, X) (see the proof of Lemma 2, first paragraph).

Let S = (v, 7), where ¥ = E[V, IX] =X, ¥, < X]. (Note that x*(r) = x.) For any
increasing utility function U,, argmax, {H.(r)} C S. To see this, note the following.
The facts that b(x|r) is increasing in r and x and b(x*(vy)|v,) = v, imply that for r = 7,
Hy(r) = Uy(vy) = Hu(vy). Notice that for r = v,

- * ab
Hy(r) = [Uy(vy) — Up(D1f(x)x"(r) + f Uyb(x|r)—/—— (x Ir)f( ) dx = 0,

at

since U,, x*, and b are increasing functions and since the screening level and bid
function are the same for any reserve price less than or equal to v(x, x). The inequality
is strict for r = v,. Therefore, argmax,{H,(r)} C S. By Lemma 3, to complete the proof
of part (i) it is sufficient to fix an arbitrary r° € § and to show H;(r°) — H,(r°) > 0.

Without loss of generality, the risk preferences in U, and U, can be main-
tained while normalizing each at two points. It is convenient to set two fixed points,
Uy(vy) = U(vg) = vy and Uy (r®) = U, (r°) = r°. Define h(:) = U, (U;'(-)); h is strictly
concave. Hence, by construction, the graph of A passes through (v,, v,) and (r°, r°), and
h'(t) < 1 for t = r° Thus, Uy(£) < U[(§) for &€ = r°, since Uy (&) = A" (U (ENU[(E).
The fact that x* € (x, ¥) follows from the definition of x* and the fact that r° e S.
Hence,

" This result was suggested by an anonymous referee.
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Hi(r°) — H\(r") = J (U (b(x|r?) — Uy (b(x|roy] (XI f(X) dx > 0,
(%)

since b(x|r°) = r°, for all x = x*(r°).

(i) The proof of the theorem for a second-price auction is similar. For this part of
the proof let H,(r) denote a seller’s expected utility from a second-price auction with
reserve price r and utility function U, for ® = M, L. That is,

X Xy

Hy(r) = f Up(v(y, ¥)) f fz y) dzdy + Uy(r) f Ff y) dy dz

x'r) vy Jx

R fal (r3
+ Ugp(vy) j fz y) dy dz,

where f is the joint distribution of the highest and second-highest private signals.

Let S retain its definition from the proof of part (i). Under the assumption that v
is constant in its second argument the implicit definition for the screen level can be
written v(x*(r), x*(r)) = r. For r < v,

o)
Hy(vy) — Ho(r) = f [Ua(ve) = Up(v(y, YOIz ¥) dz dy
Mry )
X xMr) R
+ [Uy(vy) — Up(r)] J flz, y)dy dz > 0.
(ry Jx

The inequality follows from the fact that for all ¥y < x*(vy), v, > v(y, y). To see this,
notice that when v is constant in its second argument, r = v(x*(r), x*(r)) (by implicit
definition of the screening level) and, hence, v, = v(x*(v,), x*(vy)) > v(y, ¥). A seller
will never choose a reserve price greater than 7, since H,(r) < Hy,(v,) forallr = 7. It
is straightforward to show that Hy(v,) > 0. Thus, argmax, {H.(r})} C S for both
® = Mand ® = L, and by Lemma 3, it is sufficient to fix an arbitrary r° € S and to
show H[(r°®) — H,(r°) > 0.

Again letting U,, and U; have the fixed points at v, and r° implies Uy, (r°) < U/ (r°),
SO

x XMy
Hi(r°) — Hy(r®) = [U(r) — Uyu(r9] f fz yydy dz > 0.
My Jx

Q.E.D.

The comparative static result presented in Theorem 3 holds for the generalized
affiliated-values environment in the case of first-price auctions, but we use a rather
strong assumption on valuations to prove the result for second-price auctions.!' As is

' One might suspect that this assumption implies the private-values model. However, that is not the
case. “Maximal attentive” common-value environments, as defined by Harstad and Levin (1985), satisfy the
assumption that v(x, y) is degenerate in y when y = x. This class of environments is defined by the charac-
teristic that the highest signal is a sufficient statistic for all of the bidders’ signals. Harstad and Levin (1985)
show that under this assumption second-price auctions are dominance solvable.



188 / THE RAND JOURNAL OF ECONOMICS

demonstrated in Example Al (in the Appendix), without the assumption that v is in-
variant with respect to its second argument, the result does not hold. In that example
we show that when v(x, y) = x + y, it is possible that in a second-price auction a risk-
averse seller would want to set a higher reserve price than a risk-neutral seller would.
When v is strictly increasing in its second argument, v(x*, x°) > r, and when v is
constant in its second argument, v(x*, x*) = r. Our proof of Theorem 3, part (ii) requires
that v(x%, x*) = r, and Example Al only works because in it v(x*, x') > r.

A natural intuition for the result presented in Theorem 3 is that the disutility of
failing to sell the asset when values fall below the screening level looms larger the
more risk averse the seller is. However, the result (and hence this intuition) does not
extend to second-price auctions in the general affiliated-values case. The result fails in
cases where there are no bids submitted in a neighborhood of the reserve price. (In
Example Al, when the reserve price is .6, the lowest submitted bid is in fact .8.) The
additional condition used in part (ii) of Theorem 3 ensures that bids are submitted with
positive probability in any neighborhood of the reserve price.

5. Auctions with entry fees

B Thus far, we have considered auction forms in which losing bidders pay nothing.
Some auction forms, however, involve payments by losers, as in a first-price auction
with an entry fee (a fee to permit bid submission). As is standard (see, e.g., Milgrom
and Weber, 1982), we assume that decisions to pay the entry fee are made simulta-
neously, and a bidder is not informed of how many others have paid the fee before
bidding. A bidder decides whether or not to pay the entry fee and, if paying, submits
a bid without knowing how many of the » — 1 other bidders will pay.

Theorem 4. Consider two first-price auctions with reserve price and entry fee combi-
nations (r, e) and (r’, e¢') such that ¢ < ¢’ and such that the two auctions have the
same screening level. If X, ..., X, are independent, then all risk-averse sellers prefer
the auction with the lower entry fee.

Proof. Let b, and b,,. ., denote the equilibrium bidding strategies in the auctions with
(r, ) and (r', e'). Let x* denote the common screening level. Lemma 1 implies

b(r'.(')(f“)Fh(-‘.) +e= b(r',r')(x)Fh(—x) + e’ (3)

for all x = x*. Define ) as the number of bidders paying entry fees in auctions (r, ¢)
and (r', e'). Q& = 1 5., + ...+ l .. Notice that () is the same for both auctions,
since both have the same screening level. Therefore, the revenue from auction (7, e),
R..., can be written R, = b, (Z)1 .., + eQ (recall that Z = max{X, ..., X,}).
Using (3) and the fact that -1,,..., = (), the revenue from auction (r', ¢') can be
written R, ., = R, + ¥-1,,.., where ¥ = (' — &)} — l/F,(Z)). Part (i) of
Corollary 1 implies E[W-1,.,.,] = 0 and thus E[¥|Z = x'] = 0. R, and ¥ are both
nondecreasing functions of the signals X, ..., X, and hence are affiliated (Milgrom
and Weber, 1982). The affiliation of R,,,, and ¥ implies that E[V|R,,,, = g] is non-
decreasing in g (Milgrom and Weber, 1982). Furthermore, notice that

E[Y|R,, > 0] =EWY¥|Z=x]=0,

since b, (x*) > 0 by the fact that b, (x) = v(x, x) > 0.

Let Y denote the support of R,,,,. Define g* € Y such that E[¥V|R,,., = q] 2 0 as
q = g*; g* is well defined, since E[V|R,,., > 0] = 0. Without loss of generality,
normalize U so that U'(¢g*) = 1; hence, U'(q) £ 1 as g = g*. This implies
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Ulg + EIY|R,., = qD) — U(g) = U(QEY|R,., = q]
E[W'Rn-.m = g]

4

IA

for all ¢ € Y, with the first inequality following from concavity.

The conclusion of the theorem, E[U(R,, ., + voliz s )] = E[U(R,,,, + vo-1 72 0)],
follows from the fact that E[U(R,, )| Z = x*] = E[U(R,,.)|Z = x*]. We establish this
inequality as follows.

E[UR, )|Z = »] = E[UR,., + ¥)|Z = x]

(r.e)
= E[U(R,., + E[¥|R,.D|Z = x]
= E[U(R(;.e)) + E[\PIR(W)] IZ = x'] = E[U(R(n))lz = x'].

The first inequality follows from Jensen’s inequality for conditional expectations and
the fact that conditioned on itself, R, ,, is nonstochastic. The second inequality follows
from (4). E[E[¥|R,.]|Z = x*] = E[¥|Z = x*] = 0O establishes the final equality.
Q.E.D.

As is the case for Theorems 1 and 2, a generalization of Theorem 4 to the general
affiliated-values case is not possible. Milgrom and Weber (1982) show that risk-neutral
sellers prefer the auction with (+', ') to the auction with (r, €). Therefore, it is straight-
forward to see that when X,, ..., X, are strictly affiliated, a seller with sufficiently
slight risk aversion prefers the auction with the higher entry fee.

6. Conclusion

8  The pattern of results we have shown suggests that revenue-enhancing devices in
affiliated-values auctions generally come at the expense of added revenue variability.
A major concern of auction theorists has been to explain the prevalence of a few auction
forms. The revenue equivalence theorem does not contribute to addressing this concern.
The affiliated-values model of Milgrom and Weber (1982) predicts that risk-neutral bid
takers prefer English auctions to second-price auctions to first-price auctions. Since
first-price auctions are quite common, there is clearly some role for a model that pre-
dicts bid takers’ preferences in reverse order to the Milgrom and Weber predictions.
To some extent, this role can be played by the models of a risk-neutral bid taker facing
risk-averse bidders. Our results provide another way of explaining the rather widespread
choice of first-price auctions. For the case when the private information of risk-neutral
bidders is independently distributed, a risk-averse bid taker prefers first-price to second-
price to English auctions. In a first-price auction, he would select a lower reserve price
than the expected-revenue-maximizing choice. Of course, a fuller explanation of the
prevalence of a few auction forms must use this model and antecedent models of single,
isolated auctions as building blocks toward models that place bid takers’ choices and
the behavior of potential bidders in a larger context of related transactions.

Appendix
] Proofs of Lemmas 2 and 3 follow.

Proof of Lemma 2. Define F, (-|%) and f,(-|x) as the distribution and density functions of ¥, condi-
tional on X, = x. The screening level. x*(r). in a first-price auction with reserve price is implicitly defined by
IV ») = rlftyvla) dy = 0. x' € (x, X), since E[V,]X, = & ¥, <X) > r > v(x, x). The differentiability

of x* follows from the differentiability of w and f by the implicit function theorem. Differentiating the
screening level definition with respect to », we get
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[, x) = rlf (e ]x) + Aer))x'(r) = Fyfxs|x) = 0, (AD)

where A(z) = fl‘ [z ) — rlfy(¥|2) dv. To see that A'(x*) > 0, define B(z) = E[Wz ¥, — r|X, =z Y < x*.

Then A(2) = BIFy, (x*|2). and A'(z) = B'(DF, (x*|2) + B()IF, (x*| 2¥oz. By definition, A(x) = B(x*) = 0.

Hence, A’(x*) = B'(x*)F,,( x*|x*). The monotonicity of v and affiliation imply 8'(x*) > 0 and, hence, A'(x) > 0.

Therefore, A’(x*) > 0 and v(x*, x') = r imply x*'(») > O for r such that E[V,|X, = % ¥, < X] > r = w(x, x).
For x > x7,

fria|o) da
Fyl(ala)

>

b(x|r) = rl{x(r)|x) + f v(a, a)L{a|x)

where L(e|x) = exp(—J £,(s|5)/F, (s|s) ds (see Milgrom and Weber, 1982). Using the definition of x*(r),
we have

ob(x | r)
ar

Sr X I»\") o
= Lix*lx) — [v(x. ) — rlL(x | o=l o i
(rlx) = [ a0y - rl(x |’6)F)YI((‘_\.|X‘-)" 12

In the case where v(x*, x*) = r, the conclusion follows easily, since L(x‘|x) > 0 for x> > x. If v(x*, x%) > r,
then (5) implies

F)b(’x|r) A .L(Xslx)
ar Fy(xe]x)

x*(r) > 0.

The inequality follows from the fact that all four terms in the expression above are positive when x > x*
and ¥ € (x X). Q.E.D.

Proof of Lemma 3. Assume contrary to the lemma that for some
xF € argmax{g,(x)} and x§¥ € argmax{g.(x)}. x}¥ < x¥.

It cannot be the case that x* = xJ, since 0 = g/(x{*) > gi(x¥) ¥ 0. Thus, it remains to show that x¥ < x¥
results in a contradiction. g,(x#) — g /(x*) < 0. since g, achieves a maximum at x*. However,

gi(xF) — g1 (1) > gilxdF) — g.x*) = 0,

since g/(x) > ga(x) for all x € |x*, x¥) C S and g, achieves a maximum at x*. Q.E.D.

Example Al. Suppose there are two bidders such that X, X, are independently distributed according to the
uniform distribution over [0, 1]. Let v(x, v) = x + v and v, = 0. Notice that the assumptions of part (ii) of
Theorem 3 do not hold. That is, v is not constant in its second argument. For this example, the screening
level is x*(r) = %r. Furthermore, the joint density 7 defined in the proof of Theorem 3 is f(z y) = 2 for
2>y, f(z v) = 0 otherwise. Hence, assuming a second-price auction, in this example, for r € [0, %] we
have

| .
: 4
Hy(ry = j j 2U(2v) dv dz + 6(3 = 2rrl,(r),
213 S
and for r where the utility is differentiable. we have
, 4 . ,
Hi(r) = 5[(3 —AnUy(r) + (3 — 2r(rULr) — Uy(4/3r)]. (A2)

It is easy to see that a reserve-price choice outside of [0, }] will not dominate the best choice within [0, %].
Define U, (§) = € and

1
2¢, for.fsﬁ
Unf) =1~ + & for e€ [—, — (A3)
= q— 3 r —_ — s
W& =gt e fo 10° 10
8 7
for ¢ > —

10° 10
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Notice that U, implies risk neutrality and that U,, implies risk aversion. The expected-revenue-maximizing
reserve price in this example is r;* = %. since

8
H(r) = ,’—7-(3 - 5r)r.

However, the expected-utility-maximizing reserve price when the seller has utility function U, is rj = %,
Substituting (A3) into (A2) yields

16.(3 5r) fi e {0 3
27 F)r, orr N O
2 3 1
—(—9 + 246¢ — 280r%), forr € |—, —
135 40 10
Hy(r) = 4(”7750) f € L2
SO FET A i T EAT0 30
2 7 — 102 1 2l 7
—_— —_ 1 _ s f —, —
15< ry2r ) orr € a0 10)
32 7 3
o forr € {—., <|.
45 10 2

The continuity of H,, follows from the continuity of U,,. (However, H,, is not differentiable at r = Y, and
r = %,.) H, achieves a maximum at rj = 7. since H,, is increasing for » € [0, %,) and decreasing for
r € (Vg %). Therefore, a risk-averse seller with utility function U,, sets a higher reserve price than a risk-
neutral seller would. While U,, is not strictly concave, it is clearly possible to construct a strictly concave
utility function that closely resembles U,, and has the property that a strictly risk-averse seller with that
utility function will set a higher reserve price than a risk-neutral seller would.
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