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This paper develops an auction model in which the winning bidder has an oppor-
tunity to cancel the transaction and pay damages to the seller. In the event of a
default on the auction contract, the winning bidder pays liquidated damages or
loses a posted deposit. When renegotiation is possible, increasing the deposit has no
effect on the seller's payoff unless the seller has some bargaining power and
exogenously receives some information about the winning bidder. Under these con-
ditions the seller’s payoff is decreasing in the level of the deposit. Journal of
Economic Literature Classification Number: D44. i€ 1995 Academic Press. Inc.

|. INTRODUCTION

Auctions often require a bond or deposit to be posted before a bidder is
certified. Presumably these terms are meant to protect the seller of the
object at auction from default on a winning bid. An example of such a
default occurred in the Federal Communications Commission sale of radio
spectrum rights during the summer of 1994. A number of bidders were
unwilling or unable to make a down payment two weeks after the spectrum
auctions and were declared in default. The model presented in this paper
demonstrates that the seller cannot increase her payoff by increasing the
level of the deposit.

The submission of a bid in an auction marks the beginning of a contract
between a bidder and a seller. The contract specifies the rules for selecting
the winning bidder and for setting the price that the winning bidder must
pay for the good. After the submission of bids, the contract binds both the
winning bidder and the seller to complete the transaction at the specified
price. In many auctions, deposits must be posted as security against the
winning bidder’s failure to complete his contractual obligations. Similarly,

* [ am indebted to Richard McLean, Martin Perry, Douglas Blair, Michael Rothkopf, and
Ronald Harstad for their encouragement and helpful comments. This paper also greatly
benefited from the comments of two anonymous referees and an associate editor. Revisions of
this paper were completed while visiting at Brigham Young University. Any opinions
expressed in this paper are those of the author and do not constitute policy of the Bureau of
Labor Statistics.
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the auction contract can specify liquidated damages. The legal term “liq-
uidated damages” describes damages for default that are specifically defined
by a contract. Both liquidated damages and deposits are ex ante specifica-
tions of the seller’s remedy in the event that the bidder breaches the auction
contract.

Deposits and liquidated damages not only serve as penalties for failing
to complete the terms of the auction contract, but they also define the max-
imum loss that can be imposed on a bidder. If the bidder expects a loss
greater than the liquidated damages or deposit, then he will default on the
contract. Thus, a model of liquidated damages or deposits can also be
interpreted as a model of limited liability; that is, the model specifies a
maximum loss that can be sustained by the winning bidder. Limited
liability may result from a bidder’s wealth constraint. In the model of
this paper 1 use the term “deposit” rather than the synonymous terms
“liquidated damage” and “limited liability.”

In the main result of the paper, 1 analyze how changes in the deposit
affect the seller’s expected revenue from the auction. A large literature has
developed around the comparison of the expected revenue generated by dif-
ferent auction rules. For a review of the auction literature see McAfee and
McMillan [11] and Milgrom [13]. Milgrom and Weber [14] compare
different auctions when bidders’ valuations are affiliated. Harstad [3] con-
ducts a similar comparison, when the number of bidders is endogenous.
Matthews [10] provides this comparison when bidders have differing
degrees of risk aversion. Riley [15] shows that the seller can extract more
revenues if she makes the bidders’ payment contingent on private informa-
tion that is revealed after the bidding.

Spulber [ 16] studies the enforcement of auction contracts. In his model,
the bidders’ values differ only in the size of a cost overrun that occurs with
common probability. He finds that when contract enforcement is weak
(damages for default are low), there are no increasing symmetric equi-
librium bidding strategies. Harstad and Rothkopf [4] analyze a common
value auction where the winning bid can be withdrawn if the winner regrets
his bid after observing the bids of his rivals. They show that the seller
receives higher expected revenue when withdrawal is possible.

I find that increasing the deposit has either no effect or a negative effect
on the seller’s expected revenue from the auction. Raising the deposit will
negatively impact revenues if (1) the winning bidder’s private information
1s exogenously revealed to the seller after the auction but before renegotia-
tion, and (2) the seller has the bargaining power in the renegotiation stage
to “link” the renegotiated price to the winning bidder’s private information.
By the linkage principle, a strengthening of the “linkage” between a bid-
der’s private information and his expected payment causes an increase in
the seller’s revenue. Therefore, decreasing the deposit increases the seller’s
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payoff. since a decrease in the deposit increases the probability of
renegotiation and, hence, the “linkage” between the bidder’s expected pay-
ment and his private information.

2. THE MODEL

The seller wishes to award an indivisible object to one of a group of bid-
ders. However, the seller does not know the value of the contract to these
bidders. The object could be a contract for the provision of goods or serv-
ices and is awarded through a sealed-bid or open auction. After the win-
ning bidder is selected but before the execution of the contract, new informa-
tion becomes publicly available that affects the valuations of the bidders.
The new public information is revealed to both the bidders and the seller.
Between the revelation of the new information and the completion of the
auction transaction, the winning bidder has an opportunity to default at
the cost of the posted deposit. While I only consider the case where the
buyer can default, there are circumstances where the seller may also wish
to default and renegotiate the auction contract. Because of the additional
complexity introduced if the seller were allowed to default, I will assume in
this paper that the auction contract requires “specific performance” on the
part of the seller. “Specific performance” is a legal term describing the most
strict level of contract enforcement where parties are forced to carry out the
terms of the contract. If the bidder defaults on the contract, then the seller
keeps the deposit and might have the opportunity to renegotiate with any
of the original bidders (including the bidder who canceled the contract).
However, | assume that the auctioneer cannot compel nonwinning bidders
to resubmit their original bids.

The set N={1,..,n}, n=2, indexes the bidders." I assume that bidders
are risk-neutral. V', denotes the value of the object at auction to bidder
ie N, while V, denotes the value to the seller. The realizations of real-
valued random variables X, and S determine ¥, through the function u:

V.=uv(S, X;). Vie N.
The realization of S determines ¥, through the function ¢,:
Vo=1vy(S).

The distribution of X, has support equal to ¥ =[x, ¥], and the distribution
of S has support equal to R. The random variable X, denotes bidder 7/’s
private information, and the random variable S is information that is

' The notation follows that of Milgrom and Weber [ 14] wherever possible.
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publicly revealed after the bidding but before the completion of the transac-
tion. Note that the function v is common to all bidders. If the revelation of
S is good news, then the values of all of the bidders increases. This sym-
metry assumption rules out the revelation of information specific only to
the winning bidder’s value.

ASSUMPTION 1. The functions v and v, are differentiable and increasing
in their arguments.

ASSUMPTION 2. X, .., X, and S are independent random variables with
paositive density functions. Furthermore, X, ..., X, are identically distributed.

Assumptions 1 and 2 make the model similar to the private values
model, in that each bidder’s value is independent of other bidders’ private
information, and the private information variables X are independent of S.
I have not been able to show the existence of an equilibrium bidding
strategy without Assumption 2.

AssUMPTION 3.  The functions v and vy have the property that YieR,
Vxe X, Ise R such that v(s, x) =70 and Is' € R such that vy(s')=10.

Assumption 3 implies that the supports of the buyer’s and the seller’s
valuations are both equal to the set of real numbers. The assumption helps
ensure that the probability of default is strictly less than one.

ASSUMPTION 4. E[V,| X,=x]>0, Vie N and ¥xe X.

ASSUMPTION 5. The expected gains from completing the transaction are
nonnegative and bounded from above; that is, there exists an m = 0 such that

mz (s, x)—vy(s) =0, vxe X, VseR.

The timing of the game is as follows. Each bidder ie N observes his
private information X, and submits a bid. Thus, a bidder’s strategy can be
expressed as a function of his private information. The bids are revealed
and the winning bidder and the auction price are determined. The realiza-
tion of S is publicly revealed after the auction. The winning bidder then
decides whether or not to proceed with the transaction at the auction price.
If he defaults, then the winning bidder loses the deposit, denoted d, to the
seller.

The public revelation of S suggests that it might be possible to construct
bids that are contingent on the realization of § so as to avoid defaults on
the auction contract. That is, each bidder would submit a payment
schedule indicating the price to be paid at each realization of S. Such
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a contract could be ruled out by a number of assumptions used in the
incomplete contracts literature. For instance, writing or enforcing a con-
tract that makes the price contingent on S may be too costly.?

The analysis focuses on symmetric subgame perfect equilibrium bidding
strategies that are increasing in the private information of a bidder.® Thus,
without loss of generality, attention is restricted to the strategy of bidder 1.
Define Y, .., Y,,_, as a reordering of X,, .., X, suchthat Y, > -.- 2 Y, _,
so that Y, denotes the highest private information value for bidders
N\{1}. Y, is an order statistic for the random variables X,, ..., X,,, with
density g(y)=(n—1)Fy{(y)" *fx(y) and distribution function G(y)=
Fy(y)" !, where fy and F, denote the common density function and dis-
tribution function of X, ..., X,,.

In general it is not possible to derive closed form solutions for the equi-
librium bidding strategies. However, in the following example such a solu-
tion is possible.

ExaMPLE 1. Let v(x,s)=s+x and vy(s)=s The bidders commonly
believe that S has a logistic distribution so that F(s) = 1/(1 + ¢ *). Further-
more, let 4 >0 denote the deposit. For the purposes of this example, 1
assume that once default occurs the seller has no other opportunities to sell
the object. (Later in the paper this is defined as the no renegotiation (NR)
case.) If ¢ is the price determined by the auction, then after observing s, the
winning bidder must decide between completing the contract and receiving
a payoff of x + s — ¢ or defaulting and receiving a payoff of —d. Hence, the
winning bidder would choose to default if and only if the realization of s
is less that ¢ —d — x. Let A(q, x) denote a bidder’s expected payoft condi-
tional on the event of winning with the bid ¢ and that his private informa-
tion and the highest value of the other bidders’ private information are
equal to x. In a second-price or open ascending value auction, it is a domi-
nant strategy to bid so that A(g, x) =0. Therefore, the bidding strategy
f(-) yields a symmetric equilibrium bidding strategy for this example if

o e " Ie)

A(P(x), -\‘)=J [x+s5—B(x)]

: s — TR 6 — ) —
Bix)— 6 (1+€~.s)2 1+€ (B(x)—0 —x)

0

for all x. Solving for f(x) in the expression above gives
Blx)=x+J—In(e’—1). The equilibrium bid is decreasing in ¢. Notice
that hmy _ ,f(x)=1cc and lim, _, , f{x)=x.

2 See Hart and Holmstrom [5] for a discussion of why contracts may be incomplete.

1t has been shown by Milgrom [12] and Bikhchandani and Riley [1] that in some situa-
tions asymmetric equilibria exist. However, to simplify the analysis I restrict attention to sym-
metric equilibria.
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3. DEFAULTING AND RENEGOTIATION

In the event of a default by the winning bidder, I consider four
possibilities. The first possibility i1s that there is no renegotiation (NR)
between the seller and any of the bidders. Hence, the object at auction would
revert back to the seller in the event of a default. In equilibrium, if the object
does revert back to the seller, then the outcome is inefficient, since according
to Assumption 5 the seller’s value for the object is less than any of the
bidders’ values {(except possibly a bidder with private information x).

The other possibilities 1 consider involve renegotiation between the seller
and the winning bidder. In equilibrium the winning bidder has the highest
value for the object at auction before and after S is revealed. Let the func-
tion p(s,x,y) denote the renegotiated price from the winning bidder’s
perspective when s 1s the realization of S, x is the private information of the
winning bidder, and y is the highest of the private information values of the
nonwinning bidders; that is, if bidder i is the winning bidder, then
y=max{x,}, ., The construction of p that follows assumes that renegotia-
tion occurs after default and hence after the deposit is paid to the seller. As
I discuss below, the results of the model will be unaffected by alternatively
assuming that renegotiation occurs prior to default. The three possible out-
comes of renegotiation that I consider are:

Strong Buyer (SB): p(s, x, y) =ry(s).
Strong Seller (SS): p(s, x, y) =uv(s, X).
Competitive Buyers (CB):

v(x, p), Vxzy
v(s, x), otherwise.

Under (SB} the buyer extracts all of the surplus in the renegotiation stage.
Under (SS) the seller extracts all of the surplus in the renegotiation stage.
For the seller to extract all of the surplus in renegotiation she must be able
to observe the winning bidder’s private information rather than simply
infer it from the winning bid. Hence, under (SS) it must be the case that
the pretransaction relationship between the winning bidder and the seller
provides an opportunity for the seller to observe x.

The (CB) case 1s somewhat more complicated than the others. The intui-
tion underlying the (CB) case arises from a situation where the seller
induces the winning bidder to pay the maximum that any other bidder is
willing to pay (as long as it does not exceed the winning bidder’s valuation)
by threatening to hold a second-stage auction. A more complete descrip-
tion of this intuition is presented in the Appendix. Under (CB), the object
is sold to the winning bidder at the maximum any other bidder is willing
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to pay, if x> . If x <y, then the object is not sold to the winning bidder.
In terms of the bidder’s payoff function, (CB) is equivalent to the case
where if x <y, then the winning bidder gets the object and pays the price
v(s, x). To see this, note that when the winning bidder does not receive the
object through renegotiation his payoff is —dJ, where J is the level of the
deposit. If the winning bidder does receive the object at the price v(s, x),
then his payoff is v(s, x) —v(s, x}) —3( = —3J). Therefore, to simplify the
modelling of the bidder’s payoff function under (CB) 1 define
pis, x, ¥) =uvls, x) whenever x <y since 1t gives rise to the payoff function
as described for the (CB) case.

Now suppose that renegotiation occurs prior to default and the resulting
price is A(s, x, y). Under (SB), g is equal to the lowest acceptable price to
the seller. Hence, p(s, x, y) =vy(s)+d, since the seller knows that if no
price is agreed to, then her payoff 1s her value for the object plus the
deposit. If renegotiation occurs prior to default the buyer’s payoff is
v(s, X) —vols) — 4, and the seller’s revenue would be vy(s)+J. These are
exactly the same payoffs that arise under (SB) when renegotiation occurs
after default. Therefore, under (SB) both the buyer’s payoff and the seller’s
revenue are unaffected by the timing of renegotiations. Similar arguments
can be made for the (SS) and (CB) cases.

Notice that under (SS),(SB), and (CB) the function p has the following
properties:

{P1) p is increasing in s, nondecreasing in x and y, and differentiable
in all 1ts variables except possibly where x =y,

(P2) the difference u(s, x) — p(s, x, ¥) 1s nondecreasing in x and non-
increasing in y.

Let ¢ denote the price determined by the initial auction, and let  denote
the deposit. Faced with the decision of whether or not to default under
(SS)(SB), and {CB), the winning bidder will compare his expected payoff
if he completes the terms of the auction contract (1.e., v(s, x) —gq) with his
payoff if he defaults (i.e., v(s, x) — p(s, x, y) —J). Hence, the bidder should
default if ¢ > p(s, x, y) + J. I define the function s*: R x X x X — R such that
s*(g — 9, x, y) 1s the unique s that solves the equation

g=pis, x, p)+9. (hH

When s* is the realization of S, the winning bidder is indifferent between
completing the transaction at the auction price and defaulting.
Assumption 3 and property (P1) imply that s* is well defined in Eq. (1).
Furthermore, s* is continuous and the implicit function theorem implies
that s* is differentiable at (¢ — 3, x, y) if x#y. Let A{x)=s*(g— 3, x, x).
Note that A'(x) is well defined. This result is immediate in the cases of (SS)
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and (SB). To see that #’(x) is well defined under (CB) define a function p
as
pls, x)=pts, x, x) =v(s, x).

Under (CB). s*(g—b, x, x) satisfies g=p(s*(g—3J, x, x), x)+3J. By the
mmplicit function theorem A'(x) is well defined.

If the winning bidder observes a realization of S greater than or equal to
s*(g—J, x,y), he will complete the transaction at the auction price; if he
observes a realization of S less than s*(¢ — 4, x, v), he will announce his
intention to default on the contract.

LemMa 1. The equilibrium bidding strategy under (NR) is the same as
the equilibrium bidding strategy under (SS).

Proof. Under both (SS) and (NR) the winning bidder’s payoff if he
completes the terms of the auction contract is u(s, x)—¢g. When the
winning bidder defaults on the auction contract, his payoff under (SS) is
v(s, x) — p(s, x, y) —d = —J while his payoff under (NR) is —dJ. Therefore,
any bidding strategy that maximizes a bidder’s payoff under (S8S) also max-
imizes his payoff under (NR}). |

In order to complete the definition of the (NR) case it is necessary to
define the functions p and s* for that case. Lemma 1 is the motivation for
the definition of p for the (NR) case that follows.

No Renegotiation (NR): p(s, x, y) = v(s, X)

Hence, in terms of a bidder’s payoff and strategy the (SS) and (NR) are the
same. In particular s* has the same definition in both cases. While (SS) and
{NR) are equivalent in terms of a bidder’s expected payofl, (SS) and (NR)
are very different from the seller’s perspective. Under (SS) the seller receives
v(s, x)+ 0 —ry(s) in the event of a default; under (NR) the seller only
receives &.

4. CHARACTERIZATION OF SYMMETRIC EQUILIBRIUM BIDDING STRATEGIES

4.1. Second-Price Auctions

In a second-price auction, the highest bidder wins and pays an amount
equal to the second highest bid. In an open auction, the active bid is orally
raised until only one bidder remains active. A bidding strategy in an open
auction is the bid at which a bidder would drop out of the auction. If a bid-
der’s expected payoff somehow depends on the private information of other
bidders, then observing when other bidders drop out of the auction would
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cause a bidder to update his estimate of his own expected payoff. However,
the definition of v together with Assumption 2 imply that second-price auc-
tions and open ascending value auctions are strategically equivalent as long
as the renegotiated price is independent of the private information of the
other bidders. That is, open and second-price auctions are equivalent under
(NR),(SS), and (SB).

A bidder’s strategy is a function of his private information. Suppose that
f i1s an increasing function that represents the symmetric equilibrium
strategy. If v is the realization of X, and y is the realization of Y,, then in
equilibrium bidder 1 would win if x >y and would pay f(y). The following
analysis demonstrates the existence of a symmetric equilibrium strategy
that is increasing in the bidder’s private information.

Suppose bidder 1 is the highest bidder and is required to pay price ¢. If
X, =x, Y=y and S=s, then he accepts the object when s = s*(¢ — 9, x, y)
and defaults when s <s*(¢ — d, x, ¥). Thus, if bidder 1 wins the auction and
the other bidders use the same increasing strategy B, then his expected
payoff conditional on X, =x and Y, =y, denoted 7, is written

o

ﬁ(q,x,y)zj [o(s, x)—q] f(s)ds

s*g - Sy

+ [v(s, x}Y—p(s, x, 1) — 3] fls)ds,

J._\-‘(q -d. N V)

—

where f enotes the density function of S.

In second-price auctions, the price is equal to the highest of the losing
bids, B( ). Let #5F(z, x) denote the expected payofl of a bidder with private
information x but who bids as if his private information were equal to z;
that is,

7Pz, x) =J By X, ¥) gly) dy.

X

(Note that I have suppressed the dependence of 7% on f.) Recall that g
denotes the density of Y,. The following lemma demonstrates that suf-
ficient conditions for a symmetric increasing equilibrium bidding strategy
in a second-price auction can be expressed in terms of 75",

LemMMA 2. Let n°%(z, x) be as above. If B is an increusing function
satisfying
(Al)y #3P(z,x)=20, =-<x
(A2) =i"(z, x) <0, o>

(A3) #(B(x) ¥, x) =0,
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then B is an equilibrium bidding strategy in the second-price auction. { The
notation nz, x) represents the partial derivative of m with respect to its ith
argument.)

(See the Appendix for the proof.)
The following proposition characterizes an equilibrium bidding strategy
for a second-price auction.

PROPOSITION 1. Suppose (1) d >0 and p satisfies (NR), (§8S), or (CB), or
() o0>FE[u(S, X)—p(S, X, xX)] and p satisfies (SB). For second-price
auctions there exists a symmetric Nash equilibrium bidding strategy i X - R
defined by the equation

J ) [o(s, X) = B(x)] f(s)ds
S*pINY 00X X))

Ay pBx) o d X x)
+. [v(s, x)—p(s, x,x)— 3] fls)ds=0. (2)

{See the Appendix for the proof.)

4.2, First-Price Auctions

In a first-price auction, the highest bidder wins and is required to pay an
amount equal to his own bid. Let z""(z, x) denote the expected payoff of
a bidder with private information x who bids as if his private information
were equal to z; that is,

Pz, x)= r A B(z), x, v) gl y) dy.

x

(Note that I have suppressed the dependence of z'* on f.)

The following lemma gives the conditions required for the existence of an
equilibrium. The proof proceeds along the same lines as the proof of
Lemma 2.

Lemma 3. Let zn'%(z, x) be as above. If B is an increasing function
satisfying
(Bl) =Pz, x)=0, I<x
(B2) ntP(z, x) <0, I>x

(B3) #(B(x), x,x)=0,

then 1 is an equilibrium bidding strategy in the first-price auction.



AUCTIONS WITH LIQUIDATED DAMAGES 541

The analysis of the first-price auction is considerably more complicated
than the second-price auction. In particular, [ have not been able to show
that the conditions of Lemma 3 are satisfied for first-price auctions using
the conditions imposed up to now. Thus, to make the first-price problem
more tractable | make the following assumptions.

[ Monotone Hazard Rate (MH)] f(s)/[ 1 — F(s)] is nondecreasing in s,
and {7 [1—F(&)]dE < o, for all 5.

[ Separability (S)] v(s, x)=y{x)+ @(s), where Y'(x)>0, ¢'(s)>0
¢"(s)<0, and lim, _, , ¢(s)[ 1 — F(s)] =0.

The monotone increasing hazard rate assumption (MH) is a regularity
condition that is common in models where incentive compatibility con-
straints are imposed.

ProprosITION 2. Let p satisfy (NR), (SS), (SB), or (CB). If (S) and
(MH) hold and f is a solution to the differential equation

/’”(.\‘)={j:‘<llu»d. \-.,\»[U(S~ x) = f(x)] fls)ds
_R jl,‘vj;(/fui/«)‘. X X) S(s) gly)ds dy
!‘.\j(fk\'i 8, x, x) [l‘ s, \_) p(é X, V __o‘f 3)] d57

), 3
T S j*(/;'\,,,)\\)f g(y)dsdy fg(\) (3)

with initial condition

L

[o(s, ¥) = B(x)] Ss

J‘v‘l fixy—ad.x,x)

SR -3, X, X

+J [v(s, x)—pls, x, x) 3] fls)ds=0

then 8 is a sypmmetric equilibrium bidding strategy for a first-price auction.
(See the Appendix for the proof.)

4.3. Enforcement versus Nonenforcement of an Auction Contract

The general assumption in this paper is that the auction contract is “par-
tially enforced” in the sense that the winning bidder is not forced to pay the
auction price after observing the realization of S. In the traditional auction

4 This assumption is satisfied by uniform, exponential, and normal distributions. Assump-
tion {MH) is slightly stronger than the standard assumption of a monotone nondecreasing
hazard rate. The requirement that { [1— F(£)] d¢ converge is satisfied by any distribution
where f{s)/[ 1 — F{s)] is nondecreasing and reaches a value greater than or equal to one.
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framework where deposits do not appear, the auction contract is “perfectly
enforced,” in the sense that the winning bidder must pay the auction price
and take the object. It seems plausible, therefore, that partially enforced
auction contracts (described here) with large J should be “similar to” auc-
tions that are perfectly enforced. Indeed, under the mild regularity condi-
tion that lim,_ ,J0f(s*(fis(x)—d, x,x}=0, the equilibrium bidding
strategies characterized in Propositions 1 and 2 “converge” to the Milgrom
and Weber [ 14] equilibrium bidding strategies.

Another limiting case arises when the auction contract 1s weakly
enforced; that is, when J is close to zero. As é approaches zero, the equi-
librium bid, if it exists, approaches infinity. Therefore, weak enforcement of
the auction contract may lead to bids that are well above the expected
value for the object at auction.

The following proposition demonstrates how changes in the level of the
deposit affects the equilibrium bidding strategy and the probability of
default.

ProrosiTioNn 3. Let p satisfy (NR), (SS), (SB), or (CB). Consider two
auctions (second-price or first-price) that are identical except for their level
of the deposit & and & with § > . Let B and P be increasing, symmetric, and
differentiable  equilibrium  bidding  strategies. Then  By(x) < fix),
S*f(x)—0, x, 3) <s*¥(fs(x) -3, x, ), and F(s*(fsx)—d, x,¥)) <
Fs*(fslx)— 5. X, ), for all x, ye X

(See the Appendix for the proof.)
Proposition 3 asserts that equilibrium bid levels and the probability of
default are both decreasing in the level of the deposit.

S. REVENUE COMPARISONS

5.1. Revenue Comparisons with Renegotiation

Revenue comparisons have occupied a great deal of attention in the
competitive bidding literature. The main building block of these results is
the Linkage Principle. In the present context, revenue comparisons are
made across auctions with different levels of the deposit. The Linkage Prin-
ciple® exploits a statistical “linkage” between a bidder’s private information
and the informational basis of the price. An auction where the bidder with
the highest value wins and pays a positive price, while the losing bidders
pay nothing, is called a standard auction. The Linkage Principle applies to

* My exposition of the Linkage Principle has greatly benefited from Milgrom and Weber
[14] and Milgrom [13].
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all standard auctions. Thus, the application of the Linkage Principle
requires the existence of an equilibrium bidding strategy S that is increasing
in a bidder’s private information.

Let r(z, x) denote the expected benefit received from participating in the
auction given that the other bidders use § and that bidder 1 receives
private information x but bids f(z); that is, r(z, x)= E[V,|X, =x]G(z2).
(Recall that G is the distribution function of Y,.) Let w*(z, x) denote the
payment in the competitive bidding mechanism A for a bidder who receives
private information x but bids f(z). Thus, n* (the expected payoff of a bid-
der participating in auction A) can be written in terms of r and w as
78z, Xy =r(z, x) —wh(z, X).

LemMMa 4. (The Linkage Principle). For two standard auctions A and B,
suppose that for all xe X, wr(x, x) <wB(x, x) implies wi(x, x) = wB(x, x).
Then w?(x, x) = wB(x, x) for all xe{(x, X], and the expected payment by the
winning bidder is larger in auction A than in B.

(See Milgrom [ 13, Proposition 6].)

I use the Linkage Principle in the following proposition to relate the size
of o to the seller’s expected revenue. The proposition implies that a seller
does not increase her expected revenues by strengthening her enforcement
of the auction contract.

ProrosITION 4. Consider an auction with a deposit in which the sym-
metric equilibrium strategy is increasing and differentiable in a bidder's
private information:

(a) wunder (SS), the seller's pavoff is a decreasing function of o
{(b) under (CB) and (SB), the seller's payoff is constant with respect 1o 8.

Proof. Recall that w*(z, x) denotes the expected payment by a bidder
with private information x who bids as if he had private information =
in standard auction A. The proof is completed by applying the Linkage
Principle.

Let 6 >4 and suppose w?(z, x;6) and w™(z, x,d) denote the expected
payments in two auctions that differ only in the deposit é and &, respec-
tively. Let S, and fi; be increasing and symmetric equilibrium bidding
strategies in these two auction, respectively. If w(z, x) is defined as above,
then in a first-price auction,

Wiz, x1d) = ’ {ﬁo‘(:)[l — F(s*(Bsz) = 0. x, ¥))]

SMBsz)— oy .
+J [p(s, x, »)+0] f(s) dS} g(y)dy,



544 KEITH WAEHRER
so that

. X X A PAN) - Sy .
wiP(x, x; J) :J‘ J. pals, x ) f(s) g( ) ds dy.

For a second-price auction,
wSP(z x; 0) = J {/"»( W= Fs*(fs(v)—d, 5, 1))]

X

AT sy A N )

+J [p(s, v v)+8] fl9) a's} gl y)dy,

so that

X ops* M) S ao

w3P(x, x; ) =f J Pals, o v) fls) g(y) ds dy.

RY .

Then, by Proposition 3, d>4 implies s*(8,(x)—d. x, v) <s*(fs(x)—
. x, y) for all x,y. Hence, by the hypothesis of the linkage principle, the
effect of & depends on the sign of p,(s, x, y). Using the expression for
wiP(x, x) above; note that wiP(x, x;d) <w!P(x, x:d) under (SS) since
pals, x, ) >0. Therefore, the seller’s revenue under {SS) is decreasing in 0.
Under (CB) and (SB), wi'(x, x;d)=wtP(x, x;0) since pafs, x, y)=0.
Therefore, the seller’s revenue under (CB) and (SB) is constant with respect
to J. An identical argument applies to second-price auctions. |

From the proof of Proposition 4 1t 1s clear that the effect of J on the
seller’s payoff depends on the sign of p,(s, x,y) and not the level of
ps, x,y) per se. Suppose that the renegotiated price is p(s, x, yj=
av(s, X)+ (1 — o) vg(s). Assuming that the resulting equilibrium bidding
strategy is increasing and differentiable, the seller’s payoff would decrease
in J as long as « > 0. Hence, the result depends not on the seller receiving
a high price in renegotiation but rather on her ex post knowledge of the
winning bidder’s private information from an exogenous source and her
ability to make the renegotiated price depend on that information.

Revenue equivalence fails under (SS) because the seller is assumed to be
able to extract all the surplus in renegotiation whether or not the winning
bidder submits a bid consistent with equilibrium. Hence, I assume that the
seller’s information regarding the winning bidder’s private information
comes from a source other than the winning bid. Under (SB) and (CB)
revenue equivalence holds since the renegotiated price does not depend on
the winning bidder’s private information.

The result is similar to the main result of Riley [ 15] who shows that if
ex post information on the buyer’s private information can be related to
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the price paid by the buyer, then the seller can increase her revenue from
the auction. Renegotiation provides an opportunity for the seller to link the
price to the winning bidder’s private information. When the renegotiated
price p is positively related to knowledge of the winning bidder’s private
information from sources other than the winning bid, the “linkage”
between the buyer’s private information and the price he pays increases as
the probability of renegotiation increases. The seller can increase the prob-
ability of renegotiation through a decrease in the level of the deposit.

Part (b) of Proposition 4 seems counterintuitive, especially under (SB).
When the probability of default is “large” (close to one), a seemingly
reasonable conjecture is that the seller’s revenue is approximately the
seller’s payoff when default occurs. Under (SB) the seller’s payoff in the
event of a default is 0, the amount of the deposit. Hence, it seems
reasonable to conclude that the seller’s payoff should be increasing in ¢
when the probability of default is close to one. However, this argument fails
because when the default probability is close to one the seller’s payoff need
not be approximately equal to 4. Even though the probability that the
transaction is completed at the auction price is close to zero, the level of
the bid is large. Hence, while the probability of completing the transaction
at the auction price is small, the seller’s payoff conditional on completion
of the transaction has a nontrivial impact on the seller’s overall expected
payoff. Clearly this line of argument depends on the probability of default
being less than one. If the winning bidder always defaults, then the seller’s
payoff under (NR), (8S), (SB)., and (CB) is increasing in the level the
deposit.

In many situations, bidders are required to submit a fraction y their bid
as a deposit rather than a fixed quantity such as . When the deposit is a
fraction of the bid, the conclusions of Proposition 4 remain unchanged,
whenever the equilibrium probability of default is a decreasing function ;.
To see this, note that arguments presented in the proof of Proposition 4 are
unaffected when d is replaced by yf.( - ).

5.2. Revenue Comparisons without Renegotiation

By Lemma 1 it is clear that (NR) is equivalent to (SS) in terms of a bid-
der’s payoff. This occurs because in the event of a default the winning bid-
der’s payoff is the same under (NR) and (SS). The winning bidder is better
off under both (CB) and (SB) than under either (SS) or (NR). From the
seller’s perspective (NR) and (SS) are quite different. In the event of a
default the seller receives é under (NR) and J + v(s, x) —pyls) under (SS).
Hence, by Assumption 5 the seller’s payoff is greater under (SS) than under
{NR).

In addition, the auction under (NR) is not a standard auction and the
linkage principle cannot be applied since the bidder with the highest
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valuation for the object does not always take possession of the object. Con-
sider Example 1 and assume that X, .., X, are uniformly distributed on
[0,1]. The payoff to the seller can be written as

1 v
[ [ {pon—Apn—s—x1+orpm —o-x)
—Jy de(s)} n(n—1)y"~2dydx.
pLyy—6—x

Numerical integration of this expression indicates that in this example the
seller’s payoff is increasing in 4. Although 1 have not been able to prove a
more general result, the following remark demonstrates that for ¢ close to
zero the seller’s gain under (NR) is close to zero.

Remark 1. In a first-price auction the seller’s expected gain from the
sale under (NR) when the winning bidder has private information value x
can be written as

> L

[o(s, X) —vols)] fls) ds

AR (R B NN O

i L0650 = B fL5) ds = OF(x*(B) =0,

AP - O x )

In the expression above, the first integral term is the expected gain from
trade. The term within the braces is the expected payoff to a winning bid-
der, which must be nonnegative. For o close to zero, f{x) is “large” and.
thus, s* must also be “large.” However, when s* is “large,” the total
expected gain from trade is close to zero since trade occurs with low prob-
ability. An identical argument applies to second-price auctions. Therefore,
when there is no renegotiation (NR) the seller’s payoff is “close” to zero
when the deposit is “close” to zero. Hence, the seller would not set a
deposit “close” to zero when there is no renegotiation following a default
on the auction contract.

6. CONCLUSION

One of the implications of Proposition 4 is that when renegotiation
follows a default on the auction contract, the seller’s payoff is nonincreas-
ing in the level of the deposit. Thus far I have assumed that defaulting and
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renegotiation are socially costless; that is, the process of defaulting and
renegotiation do not require valuable resources. However, if the winning
bidder’s default and renegotiation costs (those costs other than J) are
positive and independent of his private information, then it is a
straightforward application of Lemma 4 to show that under (CB) and (SB)
the seller’s payoff is increasing in 6. Lemma 4 implies that as long as the
costs and payments associated with an auction are independent of the win-
ning bidder’s private information each bidder’s expected payoff is unaf-
fected by changes in J. However, relatively lower values of  result in
relatively higher social costs associated with renegotiation since the prob-
ability of a default is decreasing in . Since each bidder’s expected payoff
1s independent of J, the larger social costs associated with lower deposits
must come out of the seller’s share of the expected gains from trade.

Throughout this paper, 1 assume that the bidders are risk neutral. A
decrease in the deposit serves to shift risk from the bidders to the seller. If
bidders are risk averse, then one might expect that such a shift would
increase the seller’s expected revenue. If this conjecture is correct, then risk
aversion among the bidders would tend to make the seller’s payoff decrease
in the level of the deposit.

As mentioned above, the model presented here can be interpreted as a
model of auctions with limited liability. All that is required is that J be
interpreted as the maximum level of losses that can be sustained by a bid-
der. However, such an application is confined to situations where all bid-
ders have the same level of limited liability. Interpreted in this way, the
results indicate that the seller’s expected revenue is not adversely affected
by the limits on the liability of the bidders. Researchers conducting auction
experiments have debated the effects of limited liability on their results. ®
It is hoped that the equilibria constructed here will help to improve these
assessments of the effects of limited liability on bidding behavior.

APPENDIX

Renegotiation in the Competitive Buyers Case

In the (CB) case suppose that the seller can induce the bidders to par-
ticipate in a second auction following a default by the winning bidder.
When the symmetric bidding strategy in the initial auction is an increasing
function of a bidder’s private information, then in equilibrium the private
information of the bidders can be inferred from their bids. Hence, in

¢ See Kagel and Levin [6, 7], Hansen and Lott [2], and Lind and Plott [9], for analyses
of the effects of limited liability on a “winner's curse” result.

642°672-18
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equilibrium, a second auction following a default yields the same result as
a complete information auction, since each bidder could infer the private
information of his rivals.

Consider an auction where each bidder’s value for the object at auction
is known by the other bidders and ties are broken by awarding the object
to the bidder with the higher value. Suppose that each bidder i’s valuation
for the object at auction 1s denoted w,, and suppose without loss of
generality that w,> --. >w,,.

ProPOSITION A. Consider a first-price complete information auction. In
every pure strategy equilibrium the bidder with the highest value wins and the
resulting price is p such that pe[w,, w,].

Proof. First 1 will show that any outcome where the bidder with the
highest value wins and pays a price p such that pe[w,, w,] is supported
by a pure strategy Nash equilibrium. Let b, denote the bid of the bidder
with value w,. Notice that in a first-price auction the bids b, =6,=
pel[w,,w,] and b,=w,; for all i>2 result in the proposed outcome.
{Recall that ties are broken by awarding the object at auction to the tied
bidder with the highest value.) In the proposed outcome the losing bidders
2, ..., n attain a zero payoff. Any alternative bid that is less than or equal
to p would also result in a zero payoff. Any bid above p would result in
their winning the auction but they would receive a negative payoff. Hence,
bidders 2,..,n cannot attain a higher payoff by dewviating from the
bids b,, .., b,. In the proposed outcome bidder | receives a nonnegative
payoff. Lowering his bid would lead to a zero payofl. Raising his bid would
reduce his payoff since he would still win the auction but would be
required to pay a higher price. Hence, bidder 1 cannot attain a higher
payoff by deviating from b, when the other bidders follow their proposed
strategies.

Now [ will show that any outcome that does not conform to the pattern
described above cannot be supported by a Nash equilibrium in pure
strategies. Consider an outcome where bidder 1 does not win. If the
strategies resulting in this outcome are an equilibrium, then the winning
bid A* must be less than or equal to w,; otherwise, the winning bidder
would have to be earning a negative payoff. However, since w, > w, bidder
1 could attain a positive payoff by bidding »* since he would win and pay
a price below his value. Hence, no outcome where bidder 1 does not win
could be a Nash equilibrium in pure strategies. Now consider an outcome
where bidder 1 does win but p¢ [w,, w,]. If p>w, then bidder 1's payoff
would be negative and he could ailways attain a higher payoff by lowering
his bid. If p <w,, then bidder 2 could submit a bid such that he wins the
auction at a price below his value, thus attaining a higher payoff than an
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outcome where he loses. Therefore, no outcome where p ¢ [, w, ] could
be supported by a Nash equilibrium. }

Ruling out equilibria where bids are higher than the bidder’s value, the
resulting price would be equal to the second highest valuation. Hence, the
seller should be able to get the winning bidder to pay at least v(s, y), the
second highest valuation. I am not proposing that in equilibrium the seller
actually holds an auction in the renegotiation stage. If the seller does hold
an auction in equilibrium, then a losing bidder who bids lower than his
equilibrium bid might win in the second-stage auction. This possibility
makes the payoff function nondifferentiable in the bid and rules out bid-
ding strategies that are increasing and differentiable in the bidders private
information. Suppose instead that the seller holds an auction after a default
only if the winning bidder refuses to pay the price v(s, ). This threat by
the seller is credible, since if the bidders follow their equilibrium strategies
the auction will result in a price of u(s, y). Faced with this credible
threat, as long as x>y, the winning bidder would be no worse off
agreeing to pay (s, y) rather than going through with the formality of an
auction.

Proof of Lemma 2. There exists a best response b* in the interval
[B(x), B(%)]. Any bid less than f(x) provides a bidder with the same
expected payoff as a bid of f{x). The probability of winning the auction is
zero for any bid less than or equal to #(x), and thus the expected payoff
is zero. Similarly, any bid greater than f(¥) provides a bidder with the
same expected payoff as a bid of B(x).

If b*e [ p(x). f(X)] is bidder I’s best response to f given X, =x, then
£~ '(b*) must maximize

Bl
f ALV, X, ) g(y) dy.

Ry

because 4* wins if and only if o* > S( Y,).

The continuity of #5% and conditions (A1) and (A2) guarantee that n5"
IS quasi-concave in - with a maximum attained at -=x. Hence,
Bl b*)=x.

(A3) is a necessary condition for f to be an equilibrium. If the proposed
equilibrium £ entails #( f(x). x, x) > 0, then a bidder with private informa-
tion x could do better than bidding f(x) by increasing his bid slightly to
raise his probability of winning above zero and thus raise his expected
payoff above zero. Similarly, if § entails #( f(x), x, X) <0, then # cannot be
an equilibrium, because the continuity of 7 implies that there is some x> x
such that #(B(x), x, x) <0. The bidder with private information x would
do better by bidding 6 =(x). |
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Proof of Praposition 1. 7°% is continuous and differentiable in its first
argument, and

n?"(:, ,\')={Jx (v(s, x)—p(z) f(s)ds
s*Pzy S, x D)

S*Bzy—dox 2) . .
+J‘ [o(s, x)—pls, x,z)— 6] f(s)ds} g(z). (4)

Using the fact that b=p(s*(b—J, x, y), x, ¥) +6 and property (P2), it is
easy to see from Eq. (4) that z35(z, x) =0, for any function f, and for all
x # . In addition, Eq. (2) is equivalent to z5¥(x, x) =0 for all xe X. There-
fore, (Al) and (A2) must be satisfied for any f that satisfies Eq. (2), since
n3P(z, x) is nondecreasing in its second argument and is equal to zero when
z=x. Condition (A3) is trivially satisfied, because Eq. (2) evaluated at x is
exactly 7(f(x), x. x)=0.

Next I show that any function £ that satisfies Eq. (2) is increasing. If f§
satisfies Eq. (2), then b = fi(x) satisfies b =o(b, x), where

a(b, x)= J B v(s, x) f(s)ds

S¥b— 5, xox)
s*b -3, x, X
+J‘ [v(s, x)+b—p(s, x, x)—3] fls)ds.

The function ¢ is increasing in b and x. To see that a(b, x) is increasing in
b note that

o(b, x)=F(s*b—9,x,x))>0.

Similarly, to see that (b, x) iIs increasing in x note that

o

o5(b, X} =

vy, x) f(s)ds

s b — 8, x N)
s*bh - S, Nx)
+ f [es(s, x)—Fs(s, x)] fls)ds,

where p(s, x)=p(s, x, x). Under (SS) and (CB) p(s, x)=v(s. x). Under
(8B), p(s,x)=FE[V,|S=5]. Hence o,(b, x)>0 since uv,(s, x}>0 and
va(s, X} — (s, x) 20. Now to show that f is increasing, note that f(x)
must satisfy o(f(x), x) — f'(x) =0. The implicit function theorem implies
that f'(x) =a,(f(x). x)/[ 1 —a,(B{x), x)] > 0.

It remains to be shown that a solution to Eq. (2) exists. Assumption 4
implies that E[V,]X,=x]>0 for all xeX. It is also the case that
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ob.x) 2 E[V,|X,=x] for all b and x. Thus, for all x and for
b=0,a(h, x)—b=0. Since s* is increasing in b, lim, _, . a(b, x)—b <0 by
Assumption 6. Thus, for é >0, there exists ' such that o(¥’, x) — b’ <0.
Therefore, a(0, x)—0 =0 and a(b’, x) — b’ <0 for all xe X. It follows that
for each x there exists a f(x) between 0 and b’ such that a(B(x), x)—
Bix)=0, since ¢ is continuous.

By Lemma | these results hold for the (NR) case. |

Proof of Proposition 2. The following lemmas are needed to prove the

proposition.

LEMMA A. Under assumptions (S) and (MH),

H{x)= i v(s, x) J(s)

’ , : d
Jx'(bfé. o 1— (S*(b -0, X, ,\')) g

is nondecreasing in Xx.

Proof. (S) implies that
H(x)=y(x)+ E[¢(S) | S=s5*].

The proof is immediate when s* is independent of x as is the case under
(CB) when x =y and under (SB). s* is not independent of x under (CB)
when x <y or under (SS). In these cases p(s, x, y) = v(s, X).

Therefore, it remains to show that the lemma holds when
pls, x, ¥) =uv(s, x). Differentiating with respect to x yields

LAEL4(S)| S>5*] 0s*

H(x)=¢'(x) ds* ox '

(3)
By the definition of s*, when p(s, x, y)=1u(s, x), ds*/0x = — Y'(x)/'(s*).
Equation (5) becomes

_dE[4(S) | 525*] 1

A=) ds* $'(s*)

The conclusion of the lemma depends on H'(x)=0. dE[$(S)|S
Zs*)/ds* <¢'(s*) is sufficient for H'(x)>0. Integrating E[¢(S)|S = s*]
by parts, using the assumption that {* [1—f(&)] d¢ < oo (in (MH)) and
lim,_ ., ¢(s)[ 1 —f{s)] =0 (in (S)), yields

fEll—F&)] ¢(&) as

( ok — 2k
ELYS) | §2 5% )= g5 42—
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Differentiating with respect to s* yields

dE[¢(S)|st*]_f,;‘;[l—F(c)]qb’(é)cff (5*)
3*

ds* - [1—F(s*)]°
f [1—F&)TdEfis*) ¢'(s*
[l—F(s ) '

where the second inequality follows from the concavity of ¢.

The nondecreasing hazard rate assumption (MH) is identical to the log
concavity of 1 — F{s) (ie., log [l — F(s)] is concave). The log concavity of
1 — F(s) implies the log concavity of j»\’* [1—=F(&)] dS (see Karlin [8]).
Furthermore, the log concavity of {7 [1—F(&)]dE implies (7 [1-—
FE&)] def(s*) < [1 — F(s*)]? This implies

fal1—F ]dg/( ) ' (s*)
[1—F(s*)]°

<P'(s™),
and the result is proven. ||

Lemma B.  Suppose h and f are defined by the differential equation
h(B(x), x) ptx) = f'(x

with ( >0, VxeX If h(p(x).x)>0, for all xe[x %), and
MP(x), x)u(x) =0, then f'(x)>0, Vxe(x, X].

!
/

Proof. If there exists e (x, X] such that §'(£) <0, then A(f(2), £)<0.
Thus, there exists a ze[x, ¥] such that A(f(z),z)=0 and dh(/)’ ), 2
dz <0. Note that

Thip(z), =
:%zl (B(z), 2) Br(2)+ ha(Bi2), 2) €0,
Hence h,(f(z), z) >0 implies that f'(z) #0. But this violates the differen-
tial equation at z. Thus, such an £ cannot exist and the result is shown.

To prove Proposition 2, it is sufficient to show that a solution to the dif-
ferential equation f satisfying the initial condition satisfies the conditions of
Lemma 3. First note that the initial condition is precisely condition (B3) of
Lemma 3.
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Define the function D as

D(:,.\'}z{fjr [v(s, x)—B(2)] fis)ds

Sy Blzy—d.x. D)

SHPx) B X 2)
+J [v(s, x)—pls,x,2) — 0] f(s) dé} glz)

ST 'y ds db. 6
()] L(m. g dsdy (6)

Notice that D(z, x)=n}"(z, x) for z#x. Since Eq. (3) is equivalent to
D{x,x)=0and D is contmuous m its second argument, conditions (Bl)
and (B2) hold, if D 1s nondecreasing in x. D is clearly nondecreasing in x
for those cases where s* is independent of x. (That is, for (CB} where x >y
and (SB).)

When s* is not independent of x, p(s, x. y) =u(s, x) and D can be written
as

[L (5, X)—p(2)] S8
~ ) — (/ﬂ ) - S.x2)
D("'\)_{ [1—F(s*(Biz)—d.x, 2))]
F(s*(ﬂ(:) J, x,2)) —ﬁ'(")G(:)}
[1—-F(s*(B(z)—d,x,2))] T glo)

x[1=Fs*(f(z)—9,x,2))] g(2)

Here conditions (B1) and (B2) hold, if the term within the braces is non-
decreasing in x. Notice that the integral term within the braces is non-
decreasing by Lemma A. Under (SS), s* is defined by uv(s* x)=5b-3.
Since v 18 increasing in both arguments, s* must be a decreasing function
of x. Thus, the second term within the braces is increasing in x.

It remains to be shown that f is an increasing function for all xe X.
Define the function h as

(b S, x, \1[1' 8, Y)—b] f

5 5 *b--8, x, m

g0 Legs, x) = pls, x, )~ 61 f(s) ds
g 5 b -d. N, \)f g(}')dsd_}‘

Note that A(f(x), x) is equal to the term within the braces of Eq. (3).
Defining u(x)=g(x), Eq. (3) becomes

+

h(B(x), X) u(x) = f'(x).
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Since h 1s differentiable and increasing 1n its second argument,
hy(B(x), x)>0, for all x. Condition (B3) implies A(f(x), x)=0. This
together with u(x)>0, by Lemma B, implies that f(x)>0 for all
xe(x, x], and thus f is increasing on the interval [x, X].

By Lemma 1 these results hold for the (NR) case. |

Proof of Proposition 3. Let f; and f; denote the equilibrium bid-
ding strategies defined by the proposition. It is sufficient to show that
6>6 implies Byx)<Bs(x) for all xeX. If this is true, then
*(Bsx) =6, x, y)<s*(fs— o x, y) for all x, ye X.

Second-Price Auction Case: Eq. (2) implies that f§s(x) must satisfy

r v(s, x) f(s)ds

MM x) =6, N Xx)

Jn&"i Polx)—J, x, x)

+ Lu(s, x) + Bl x) —pls, X, 3) =] fls)ds — Bsx) =

— 7

The implicit function theorem implies that df;/do= — F(s*)/
[1-F(s*)]<0.

First-Price Auction Case: The analysis is similar to the proof of
Lemma B in the proof of Proposition 2.

<j.\7;(b d, x, \)[L 5 Y b] f s &) )
[0 [y, x) — (5 X, x)=38] fls)ds
T 5w £05) (3) ds dy

Let u(x) = g(x). The differential equation in Eq. (3) of Proposition 2 can be
written as

h(b, x;0)=

h{(Bs(x), x;0) u(x) = Bis(x). (7)

If B; is an increasing, symmetric, and differentiable equilibrium bidding
strategy, then Eq. (7) must be satisfied.

Employing the same argument as that used above for the second-price
auction, we can apply condition (B3} to conclude that f,(x) < fi5(x). Thus,
if there exists an ve X such that f,(x) = fs(x), then there must exist a
ze(x, x] such that f,(z)=pf4z) and ﬂ’o( )= B i(2) By the differential
equation above, this implies that h(f4(z), z; ) Z h(f 4z ). Differentiat-
ing (b, x; &) with respect to & yields 0A(b, x; 6)/6¢5<0 for all b, x, 0 such
that 4(b, x; ) > 0. Note that §'(x) > 0 implies that the function 4 is positive
for all relevant values of b, x, J. However, a contradiction arises since 0 > &
implies h(f4(2) -4 3)<h(Bsz), z; 8) because f,(z = fs(z). Hence, fis(x) <
Bs(x) for all xe X, and the conclusion follows. |
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